
The Scientific Method

- Scientific method is a standard series of steps in gaining new knowledge through research.
 - Begins with observation
 - Scientists use their five senses e.g. use visual sense to observe animal behavior
 - Instruments can extend the range of senses e.g. use microscope to see microorganisms
 - Take advantage of prior studies

Hypothesis

- A tentative explanation for what was observed
- Developed through inductively reasoning from specific to general

The Scientific Method: A Flow Diagram

Courtesy Leica Microsystems Inc.

The Scientific Method: Experimentation

Experimentation

- Purpose is to challenge the hypothesis
- Designed through deductively reasoning from general to specific
- Often divides subjects into a control group and an experimental group
- Predicts how groups should differ if hypothesis is valid
 - If prediction happens, hypothesis is unchallenged
 - If not, hypothesis is unsupportable

The Scientific Method

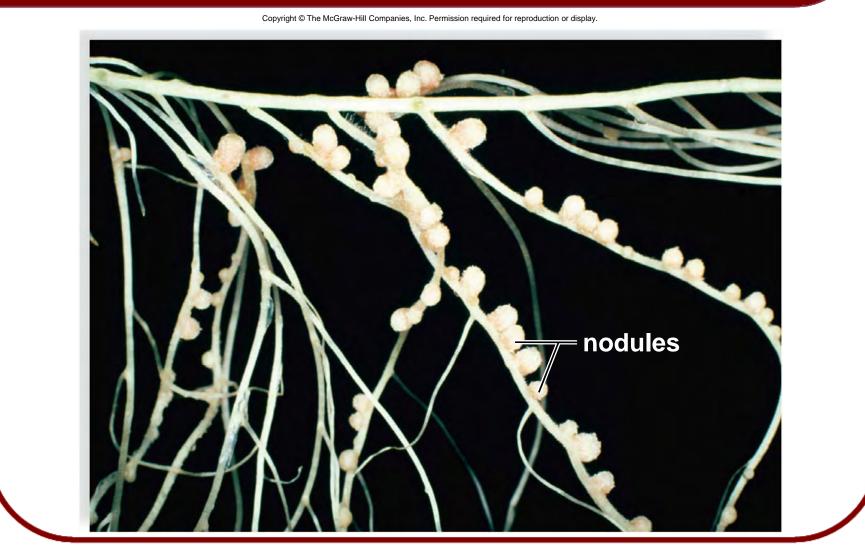
- The results are analyzed and interpreted
- Conclusions are what the scientist thinks caused the results
- Findings must be reported in scientific journals
- **Peers review** the findings and the conclusions
- Other scientists then attempt to duplicate or dismiss the published findings

The Scientific Method: Results

Results or Data

- Observable, objective results from an experiment
- Strength of the data expressed in probabilities
- The probability that random variation could have caused the results
 - Low probability (less than 5%) is good
 - Higher probabilities make it difficult to dismiss random chance as the sole cause of the results

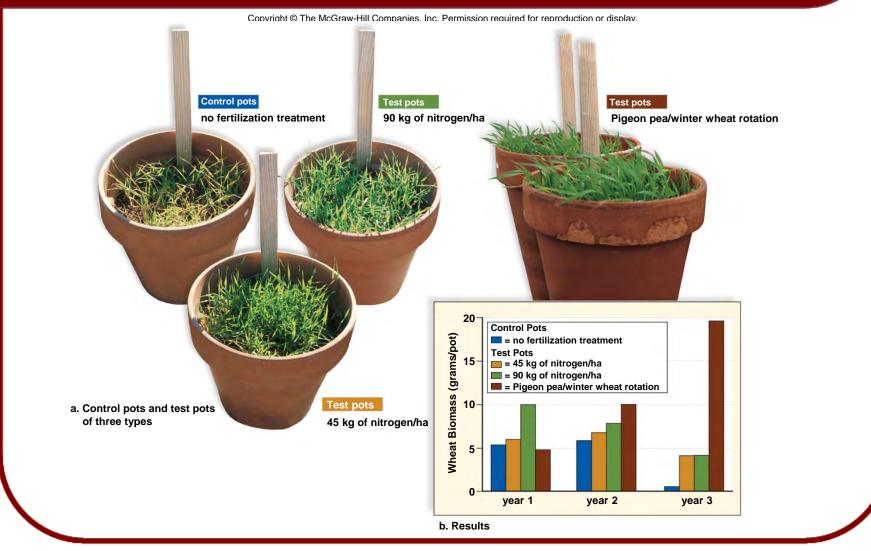
Scientific Theory


Scientific Theory:

- Joins together two or more related hypotheses
- Supported by broad range of observations, experiments, and data
- Scientific Principle / Law:
 - Widely accepted set of theories
 - No serious challenges to validity

- Experimental (Independent) variable
 - Applied one way to experimental group
 - Applied a different way to control group
- Response (dependent) variable
 - Variable that is measured to generate data
 - Expected to yield different results in control versus experimental group

- Observations:
 - Nitrate fertilizers boost grain crops, but may damage soils by altering its properties
 - When grain crops are rotated with pigeon pea it adds natural nitrogen
- Hypothesis:
 - Pigeon pea rotation will boost crop production as much as nitrates
 - Pigeon pea rotation will NOT damage soils


Root Nodules

© Dr. Jeremy Burgess/Photo Researchers, Inc.

- Experimental Design
 - Control Group
 - Winter wheat planted in pots without fertilizer
 - Experimental Groups
 - 1-Winter wheat planted in pots with 45 kg/ha nitrate
 - 2-Winter wheat planted in pots with 90 kg/ha nitrate
 - 3-Winter wheat planted in pots that had grown a crop of pigeon peas
 - All groups treated identically except for above

Crop Rotation Study

(All): Courtesy Jim Bidlack

- Experimental Prediction:
 - Wheat production following pigeon pea rotation will be equal or better than following nitrate fertilizer
- Results
 - 45 kg/ha produced slightly better than controls
 - 90 kg/ha produced nearly twice as much as controls
 - Pigeon pea rotation did not produce as much as the controls

Conclusion

- Research hypothesis was not supported by results
- However, research hypothesis was not proven false by negative results
- Revised experiment
 - Grow wheat in same pots for several generations
 - Look for soil damage in nitrate pots and improved production in pigeon pea pots

Results

- After second year:
 - Production following nitrates declined
 - Production following pigeon pea rotation was greatest of all
- After third year
 - Pigeon pea rotation produced 4X as much as controls
- Revised conclusions
 - Research hypothesis supported
 - Pigeon pea rotation should be recommended over nitrates