Chapter 2 – "Basic Chemistry"

30 January 2012

Outline

Chemical Elements

- Atoms
 - Atomic Mass and Atomic Number
- Periodic Table
- Isotopes
- Electrons and Energy
- Molecules and Compounds
- Chemical Bonding
 - Ionic and Covalent
 - Hydrogen
- Properties of Water
 - Acids and Bases

Chemical Elements

• Matter:

- Matter is defined as anything that has mass and occupies space
- Matter exists in three states: **solid**, **liquid**, **and gas**
- All matter (both living and non-living) is composed of 92 naturally-occurring elements
- 98% of body weight of organisms are primarily composed of six elements (carbon, hydrogen, nitrogen, oxygen, phosphorus, and sulfur—acronym CHNOPS) make up 98% of the body weight of organisms.

Composition of Earth's Crust versus Organisms

Atomic Structure

- Atom is the smallest unit of an element
- Atoms composed of subatomic particles:
 - Protons positive charge; weight of approximately 1 Dalton, found in the nucleus
 - Neutrons no charge; weight similar to protons, found in the nucleus
 - Electrons negative charge; weigh 1/1836th
 Dalton; found in electron shell
 - Atoms contain specific numbers of **protons, neutrons, and electrons.**

Subatomic Particles

Subatomic Particles				
Particle	Electric Charge	Atomic Mass Unit (AMU)	Location	
Proton	+1	1	Nucleus	
Neutron	0	1	Nucleus	
Electron	-1	0	Electron shell	

C.

Atomic Symbols

• Each element is represented by one or two letters to give them a unique atomic symbol

• H = hydrogen, Na = Sodium, C = Carbon

- Each atom has its own specific mass (atomic mass)
- Atomic mass of an atom depends on the presence of subatomic particles
 - Atomic number = proton number;
 - Atomic mass or mass number = protons and neutrons

Atomic Symbol

The atomic number is above the atomic symbol and the atomic mass is below the atomic symbol

Periodic Table

- Elements grouped in periodic table based on characteristics
 - Vertical columns = groups; chemically similar
 - Horizontal rows = periods; larger and larger
- Atomic mass increases as you move down a group or across a period.

Periodic Table

10

Periodic Table

11

Isotopes

Isotopes:

 Atoms of the same element with a differing numbers of neutrons (and therefore have different atomic masses).
 e.g. see carbon below

Some isotopes spontaneously decay

- Radioactive
- Give off energy in the form of rays and subatomic particles
- Can be used as tracers
- Mutagenic Can cause cancer

Some Medical Uses for Low Level Radiation

MRI, CT, Nuclear Medicine

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

a: © Biomed Commun./Custom Medical Stock Photo; b(Right): © Hank Morgan/Rainbow; b(Left): © Mazzlota et al./Photo Researchers, Inc

Some Medical Uses for High Level Radiation

Radiation can kill cancer cells

Radiation can preserve food longer

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

a: (Peaches): © Tony Freeman/PhotoEdit; b: © Geoff Tompkinson/SPL/Photo Researchers, Inc.

Electrons and Energy

- Atoms normally have as many electrons as protons
- Opposite charges balance leaving atom neutral
- Electrons are attracted to the positive nucleus
 - Revolve around nucleus in orbitals
 - Can be pushed into higher orbitals with energy
 - Release that energy when they fall back to lower orbital
 - Different energy levels referred to as electron shells

Animation

The Octet Rule for Distribution of Electrons

- Bohr models show electron shells as concentric circles around nucleus
 - Each shell has two or more electron orbitals
 - Innermost shell has two orbitals
 - Others have 8 or multiples thereof
- The outermost electron shell determines the reactivity of the element
 - If 3 or less Tendency to donate electrons
 - If 5 or more Tendency to receive electrons

Bohr Models of Atoms

Compounds and Molecules

- Compound when atoms of two or more different elements bond together
 - CO₂, H₂O, C₆H₁₂O₆, etc.
 - Characteristics dramatically different from constituent elements
- Molecule and compound is used interchangeably
 - In Biology molecule is used e.g. molecule of water (H₂O) molecule of glucose (C₆H₁₂O₆)
- Bonds that exist between atoms in molecules contain energy

Compounds and Molecules

Chemical Bonding

- Bonds between atoms are caused by electrons in outermost shells
- The process of bond formation is called a reaction
- The intensity of simple reactions can be predicted by the periodic table
 - If two elements are horizontally close in the table, they usually react mildly
 - If they are horizontally far apart, they usually react vigorously

Types of Bonds: Ionic Bonding

- Ionic bond forms when electrons are transferred from one atom to another atom.
- Octet rule atoms lose or gain electrons to fill their outer shells and become more stable
 - Atoms "want" 8 electrons in outer shell
 - If have < 4, desire to donate electrons</p>
 - If have > 4, desire to receive electrons
- Consider two elements from opposite ends of periodic table
 - Element from right side:
 - Has 7 electrons in outer shell
 - "Desperately wants" one more (7+1=8)
 - Element from left side:
 - Has only 1 electron in outer shell
 - "Desperately wants" to donate it (1-1=0=8)

Types of Bonds: Ionic Bond Example

Sodium (Na):

Has only 1 electron in its outermost shell

• Chlorine (CI):

- Has 7 electrons in its outermost shell
- In a reaction between Na and CI
 - Na loses an electron and becomes a positive ion (Na+)
 - CI gains an electron and becomes a negative ion (CI-)
 - Attraction of oppositely charged ions holds the two atoms together in an ionic bond

Formation of Sodium Chloride

Types of Bonds: Covalent Bonds

- Covalent bonds result when two atoms share electrons so each atom has an octet of electrons in the outer shell (in the case of hydrogen, 2 electrons).
- When atoms are horizontally closer together in the periodic table
 - The electrons are not permanently transferred from one atom to the other like in NaCl
 - A pair of electrons from the outer shell will "time share" with one atom and then the other
 - This also causes the atoms to remain together
 - Known as covalent bonding
- Double covalent bond when two pairs of electrons are shared between atoms

Covalently Bonded Molecules

•The structural formula of a molecule indicates a shared pair of electrons by a line between the two atoms e.g. single covalent bond (H–H), double covalent bond (O=O), and triple covalent bond (N \equiv N). $\label{eq:copyright} \verb"Copyright" \ensuremath{\mathbb{C}}\xspace The McGraw-Hill Companies, Inc. Permission required for reproduction or display.$

Electron Model	Structural Formula	Molecular Formula
HHH	н-н	H ₂

a. Hydrogen gas

b. Oxygen gas

Nonpolar Covalent Bonds

- In nonpolar covalent bonds, sharing of electrons is equal, i.e. the electrons are not attracted to either atom to a greater degree
 - One atom "wants" (with a specific intensity) to donate electron(s)
 - The other atom "wants," (with the same intensity) to receive electron(s)
 - The bond electrons will spend about equal time with both atoms

Polar Covalent Bonds

- With polar covalent bonds, the sharing of electrons is unequal i.e. atoms will have unequal affinity for electrons
 - One atom "wants" to donate or receive electron(s) with a specific intensity
 - The other atom "wants" to donate or receive electron(s) with a different intensity
 - In H2O sharing of electrons by oxygen and hydrogen is not equal; the oxygen atom with more protons attracts the electrons closer therefore assumes a partial negative charge i.e. the atom that gets the most time with the electrons will be slightly negative

Animation

Types of Bonds: Hydrogen Bonds

- Water (H₂O or H–O–H) is a polar molecule
 - Electrons spend more time with O than H's
 - H's become slightly +, O slightly -
- When polar molecules are dissolved in water
 - The H's of water molecules are attracted to the negative parts of the solute molecules and form a hydrogen bond
 - This bond is a weak attractive force between the slightly positive charge of the hydrogen atom of one molecule and slightly negative charge of another atom
 - Easily broken, but many together can be quite strong
- Help to maintain the proper structure and function of complex molecules such as proteins and DNA.

Water Molecule

The Chemistry of Water: Heat Capacity

- Water has a high heat capacity
 - Temperature = rate of vibration of molecules
 - Apply heat to liquid
 - Molecules bounce faster
 - Increases temperature
 - But, when heat applied to water
 - Hydrogen bonds restrain bouncing
 - Temperature rises more slowly per unit heat
 - Water at a given temp. has more heat than most liquids
- Thermal inertia resistance to temperature change
 - More heat required to raise water one degree than most other liquids (1 calorie per gram)
 - Also, more heat is extracted/released when lowering water one degree than most other liquids

Properties of Water: Heat of Vaporization

High heat of vaporization

- To raise water from 98 to 99 °C; ~1 calorie
- To raise water from 99 to 100 °C; ~1 calorie
- However, large numbers of hydrogen bonds must be broken to evaporate water
- To raise water from 100 to 101 °C; ~540 calories!
- This is why sweating (and panting) cools
 - Evaporative cooling is best when humidity is low because evaporation occurs rapidly
 - Evaporative cooling works poorest when humidity is high because evaporation occurs slowly

Evaporative Cooling of Animals

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

a. Calories lost when 1 g of liquid water freezes and calories required when 1 g of liquid water evaporates.

b. Bodies of organisms cool when their heat is used to evaporate water.

© Grant Taylor/Getty Images

Properties of Water: Heat of Fusion

Heat of fusion (melting)

- To raise ice from -2 to -1 °C; ~1 calorie
- To raise water from -1 to 0 °C; ~1 calorie
- To raise water from 0 to 1 °C; ~80 calories!
- This is why ice at 0 °C keeps stuff cold MUCH longer than water at 1 °C
- This is why ice is used for cooling
 - NOT because ice is cold
 - But because it absorbs so much heat before it will warm by one degree

Heat Content of Water at Various Temperatures

800 Gas Calories of Heat Energy / g 600 540 calories 400 200 Liquid 80 Solid 0 calories evaporation occurs freezing occurs 20 40 60 80 100 120 0 Temperature (°C)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

a. Calories lost when 1 g of liquid water freezes and calories required when 1 g of liquid water evaporates.

Properties of Water: Water as a Solvent

• Solutions consist of:

- A solvent (the most abundant part) and
- A solute (less abundant part) that is dissolved in the solvent
- Polar compounds readily dissolve; hydrophilic
- Nonpolar compounds dissolve only slightly; hydrophobic
- Ionic compounds dissociate in water

Na⁺

- Attracted to negative (O) end of H₂O
- Each Na⁺ completely surrounded by H₂O
- Cl⁻
 - Attracted to positive (H₂) end of H₂O
 - Each Cl⁻ completely surrounded by H₂O

Properties of Water: Water as a Solvent

Properties of Water: Water as a Solvent

Properties of Water: Uniqueness of Ice

- Frozen water less dense than liquid water
 - Otherwise, oceans and deep lakes would fill with ice from the bottom up
 - Ice acts as an insulator on top of a frozen body of water
 - Melting ice draws heat from the environment

Water as a Transport Medium

Density of Water at Various Temperatures

A Pond in Winter

Properties of Water: Cohesion & Adhesion

Cohesive and Adhesive

- Cohesion Hydrogen bonds hold water molecules tightly together i.e. allows water to flow freely without molecules separating.
- Adhesion Hydrogen bonds for between water and other polar materials
- Allow water be drawn many meters up a tree in a tubular vessel

High Surface Tension

- Water molecules at surface hold more tightly than below surface
- Amounts to an invisible "skin" on water surface
- Allows small nonpolar objects (like water strider) to sit on top of water <u>http://youtu.be/RphuMEUY3Og</u>

pH of Water: Acids

- pH is a measure of the concentration of hydrogen ions
- When water ionizes or dissociates, it releases a small but equal number of hydrogen (H+) ions and hydroxide (OH-) ions
- Acids donate hydrogen ions
 - Dissociate in water and release hydrogen ions (H⁺)
 e.g. HCI → H+ + CI
 - Dissociation of HCI is almost total, therefore it is a strong acid
 - Sour to taste

pH of Water: Bases

- Bases remove hydrogen ions
 - Either take up hydrogen ions (H⁺) or release hydroxide ions (OH⁻)
 - Bitter to taste
 - Sodium hydroxide is a solid with symbol NaOH
 - In water, it dissociates into Na⁺ and OH⁻
 - Dissociation of NaOH is almost total, therefore it is a strong base

pH Scale

- pH scale used to indicate acidity and alkalinity of a solution.
 - Values range from 0-14
 - 0 to <7 = Acidic
 - 7 = Neutral
 - >7 to 14 = Basic (or alkaline)
 - Logarithmic Scale
 - Each unit change in pH represents a change of 10X
 - pH of 4 is 10X as acidic as pH of 5
 - pH of 10 is 100X more basic than pH of 8

The pH Scale

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Buffers and pH

- When H⁺ is added to pure water at pH 7, pH goes down and water becomes acidic
- When OH⁻ is added to pure water at pH 7, pH goes up and water becomes alkaline
- Buffers are solutes in water that resist change in pH
 - When H⁺ is added, buffer may absorb, or counter by adding OH⁻
 - When OH⁻ is added, buffer may absorb, or counter by adding H⁺

Buffers in Biology

- Health of organisms requires maintaining pH of body fluids within narrow limits
 - Human blood normally 7.4 (slightly alkaline)
 - Many foods and metabolic processes add or subtract H⁺ or OH⁻ ions
 - Reducing blood pH to 7.0 results in acidosis
 - Increasing blood pH to 7.8 results in alkalosis
 - Both life threatening situations
 - Bicarbonate ion (-HCO₃) in blood buffers pH to 7.4

Review

- Chemical Elements
 - Atoms
 - Isotopes
 - Molecules and Compounds
- Chemical Bonding
 - Ionic and Covalent
 - Hydrogen
- Properties of Water
 - Acids and Bases