Chapter 32: pp. 593 - 612

Circulation & Cardiovascular Systems

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

(Normal): © Yorgos Nikas/Getty Images; (Leukemia): © SPL/Photo Researchers, Inc.

Outline

- Transport in Invertebrates
 - Open versus Closed Circulatory Systems
- Transport in Vertebrates
- Transport in Humans
 - Heartbeat
 - Vascular Pathways
 - Blood Pressure
- Cardiovascular Disorders
- Blood
 - Components
 - Clotting

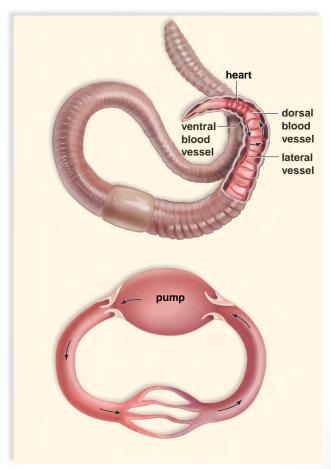
Transport in Invertebrates

- Small aquatic animals with no circulatory system
 - May rely on external water in gastrovascular cavity to service cells
- Roundworms and other pseudocoelomates
 - Use a fluid-filled body cavity as a means of transporting substances
 - Fluid-filled cavity can also act as a hydrostatic skeleton
- Animals that have a rigid skeleton
 - May still rely on body fluids for the purpose of locomotion
 - Bivalves pump hemolymph into the foot for digging into mud

Aquatic Organisms Without a Circulatory System

a: © CABISCO/Visuals Unlimited; b: © B. Runk/S. Schoenberger/Grant Heilman Photography; c: © Randy Morse, GoldenStateImages.com

Open vs. Closed Invertebrate Circulation


- Two types of circulatory fluids:
 - Blood contained within blood vessels
 - Hemolymph flows into hemocoel
- Open Circulatory System
 - Heart pumps hemolymph via vessels
 - Vessels empty into tissue spaces
- Closed Circulatory System
 - Heart pumps blood to capillaries
 - Gases and materials diffuse to and from nearby cells
 - Vessels return blood to heart without it contacting tissues

Open vs. Closed Circulatory Systems

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

a. Open circulatory system

b. Closed circulatory system

Transport in the Vertebrates

- All vertebrates have a closed cardiovascular system
- Vertebrate heart:
 - Atrial chamber(s) of heart receive blood from general circulation
 - Ventricle chamber(s) of heart pump blood out through blood vessels
- Vertebrate vessels:
 - Arteries Carry blood away from heart
 - Arterioles Lead to capillaries
 - Capillaries Exchange materials with tissue fluid
 - Venules Lead to veins
 - Veins Return blood to heart

Transport in Vertebrates

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

a. Artery

b. Capillary

c. Vein

Anatomy of a Capillary Bed

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Comparison of Circulatory Circuits in Vertebrates

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

a.

b.

C.

10

Comparison of Circulatory Pathways

- Fish Blood flows in single loop
 - Single atrium and single ventricle
- Amphibians Blood flows in double loop
 - Two atria with single ventricle
- Other vertebrates Blood flows in a double loop
 - Heart divided by septum into separate sides

Transport in Humans

- Human Heart
 - Fist-sized
 - Cone-shaped
 - Very muscular organ (special cardiac fibers)
 - Lies within a fluid-filled sac (the pericardium)

Human Heart: Gross Anatomy

- Septum separates heart into left & right halves
- Each half has two chambers
 - Upper two chambers are the atria
 - Thin-walled
 - Receive blood from circulation
 - Lower two chambers are the ventricles
 - Thick-walled
 - Pump blood away from heart

External Heart Anatomy

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

14

Internal View of the Heart

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Human Heart: Valves

- Valves open and close to control blood flow through heart
 - Atrioventricular valves
 - Tricuspid
 - Bicuspid
 - Semilunar valves
 - Pulmonary
 - Aortic

Transport in Humans

- Blood returning to heart from systemic circuit
 - Enters right atrium
 - Right atrium pumps through tricuspid valve to right ventricle
 - Right ventricle pumps blood through pulmonary valve to the pulmonary circuit
- Blood returning to heart from pulmonary circuit
 - Enters left atrium
 - Left atrium pumps through mitral valve to left ventricle
 - Left ventricle pumps blood through aortic valve to the systemic circuit
- Oxygen-poor blood never mixes with oxygen-rich blood (in humans)

Heartbeat

- Systole Contraction of heart chambers
- Diastole Relaxation of heart chambers
- Pulse Two-part pumping action that takes about a second
 - Blood collects in atria, the atria contract
 - Pushes blood through tricuspid and mitral valves into the resting lower ventricles
 - This phase (the longer of the two) is called the diastole
 - Second part begins when ventricles fill
 - Ventricles contract
 - This is called systole
 - After blood moves into the pulmonary artery and aorta, the ventricles relax

Stages in the Cardiac Cycle

Animation

Animation

Mechanical Events of the Cardiac Cycle

Conduction System of the Heart

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

d. Recording of an ECG

d: © David Joel/MacNeal Hospital/Getty Images

Animation

Heartbeat

- Rhythmic contraction due to cardiac conduction system
 - Sinoatrial node (SA) keeps the heartbeat regular
 - Atrioventricular node (AV) signals ventricles to contract Purkinje Fibers
- Electrocardiogram (ECG)
- A recording of electrical changes that occurring in myocardium during cardiac cycle
 - When SA node triggers an impulse, the atrial fibers produce an electrical charge (P wave)

Animation

Action Potentials in the Sinoatrial (SA) Node

Vascular Pathways

- Human cardiovascular system includes two major circular pathways:
 - Pulmonary Circuit
 - Takes oxygen-poor blood to the lungs and returns oxygen-rich blood to the heart
 - Systemic Circuit
 - Takes blood throughout the body from the aorta to the vena cava

Path of Blood

Velocity and Blood Pressure

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Cross Section of a Valve in a Vein

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

a. Contracted skeletal muscle pushes blood past open valve.

b. Closed valve prevents backward flow of blood.

Blood Pressure

- The beat of the heart supplies pressure that keeps blood moving in the arteries
 - Systolic Pressure results from blood forced into the arteries during ventricular systole
 - Diastolic Pressure is the pressure in the arteries during during ventricular diastole
- Skeletal muscle contraction pushes blood in the veins toward the heart
- Blood pressure
 - Normally measured with a sphygmomanometer on the brachial artery
 - Expressed in the form: Systolic "over" Diastolic

Cardiovascular Disorders

- Hypertension High blood pressure
- Atherosclerosis Accumulation of fatty materials in inner linings of arteries
- Stroke Cranial arteriole bursts or is blocked by an embolus
- Heart attack (Myocardial infarction) Coronary artery becomes partially blocked
- Angina pectoris Painful squeezing sensation from myocardial oxygen insufficiency

Coronary Arteries and Plaque

Blood: Homeostasis Functions

- Transports substances to and from capillaries for exchange with tissue fluid
- Guards against pathogen invasion
- Regulates body temperature
- Buffers body pH
- Maintain osmotic pressure
- Clots prevent blood/fluid loss

Red Blood Cells

- Small, biconcave disks
- Lack a nucleus and contain hemoglobin
 - Hemoglobin contains
 - Four globin protein chains
 - Each associated with an iron-containing heme
 - Manufactured continuously in bone marrow of skull, ribs, vertebrae, and ends of long bones

White Blood Cells

- Most types larger than red blood cells
- Contain a nucleus and lack hemoglobin
- Important in inflammatory response
 - Neutrophils enter tissue fluid and phagocytize foreign material
 - Lymphocytes (T Cells) attack infected cells
 - Antigens cause body to produce antibodies

Composition of Blood

Platelets

- Platelets
 - Result from fragmentation of megakaryocytes
 - Involved in coagulation
- Blood clot consists of:
 - Platelets
 - Red blood cells
 - All entangled within fibrin threads

Blood Clotting

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

2. Platelets congregate and form a plug.

3. Fibrin threads form and trap red blood cells.

© Eye of Science/Photo Researchers, Inc.

Capillary Exchange

- Capillaries very narrow Tiny RBCs must go through single file
- Wall of capillaries very thin to facilitate diffusion of nutrients, gases, and wastes
 - Oxygen and nutrients exit a capillary near the arterial end
 - Carbon dioxide and waste molecules enter a capillary near the venous end

Blood Type

- Determined by the presence or absence of surface antigens (agglutinogens)
 - Antigens A, B and Rh (D)
- Antibodies in the plasma (agglutinins)
- Cross-reactions occur when antigens meet antibodies

Blood Type

Blood Type	Antigen on Red Blood Cells	Antibody in Plasma
Α	Α	Anti-B
В	В	Anti-A
AB	A, B	None
0	None	Anti-A and anti-B

Agglutination

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Agglutination

Blood Type

- During pregnancy, if the mother is Rh negative and the father is Rh positive, the child may be Rh positive.
 - Rh-positive red blood cells may leak across the placenta
 - The mother will produce anti-Rh antibodies.
 - Antibodies may attack the embryo in a subsequent pregnancy

Review

- Transport in Invertebrates
 - Open versus Closed Circulatory Systems
- Transport in Vertebrates
- Transport in Humans
 - Heartbeat
 - Vascular Pathways
 - Blood Pressure
- Cardiovascular Disorders
- Blood
 - Components
 - Clotting

Chapter 32: pp. 593 - 612

Circulation & Cardiovascular Systems

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

(Normal): © Yorgos Nikas/Getty Images; (Leukemia): © SPL/Photo Researchers, Inc.