Chapter 34: pp. 633 - 648

Digestive Systems & Nutrition

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

© Arthur Morris/Visuals Unlimited

OUTLINE

- Digestive Tracts
 - Incomplete versus Complete TractsContinuous versus Discontinuous Feeders

 - Dentition Among Mammals
- Human Digestive Tract
 - Mouth
 - Stomach
 - Small Intestine
 - Large Intestine
 - Accessory Organs
- Digestive Enzymes
- Nutrition

DIGESTIVE TRACTS

- Incomplete versus Complete Tracts
 - Incomplete tract has a single opening
 - Ex: Planarian
 - Food enters through mouth and muscular pharynx
 - Wastes exit through mouth and muscular pharynx
 - Lacks specialized parts
 - Complete Tract has two openings
 - Ex: Earthworm
 - Food enters through mouth
 - Wastes exit through anus

INCOMPLETE DIGESTIVE TRACT OF A PLANARIAN

COMPLETE DIGESTIVE TRACT OF AN EARTHWORM

CONTINUOUS VERSUS DISCONTINUOUS FEEDERS

- Continuous filter feeders
 - Ex: Clams
 - Always have water moving into the mantle cavity via incurrent siphon
 - Particles deposited on gills
 - Do not need food storage area
- Discontinuous feeders
 - Ex: Squid
 - Uses tentacles to seize prey
 - Allows the beaklike jaws to pull pieces into the mouth with the radula
 - Food storage area needed

NUTRITIONAL MODE OF A CLAM COMPARED TO A SQUID

ADAPTATIONS TO DIET

- Dentition differs with mode of nutrition
 - Omnivores
 - Variety of specializations
 - Accommodate both vegetation and meat
 - Herbivores
 - Incisors for clipping
 - Premolars and molars for grinding
 - Carnivores
 - Pointed incisors and enlarged canines
 - Shear off pieces small enough to swallow

DENTITION AMONG MAMMALS

HUMAN DIGESTIVE TRACT

- Humans digestive tract is complete
- Part of a tube-within-a-tube body plan
- Begins with a mouth and ends in an anus
- Digestion entirely extracellular
 - Digestive enzymes are secreted by
 - The wall of the digestive tract, or
 - By nearby glands

THE HUMAN DIGESTIVE TRACT

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Salivary glands secrete saliva: contains digestive enzyme for carbohydrates

Liver major metabolic organ: —

processes and stores nutrients; produces bile for emulsification of fats

Galibladder

stores bile from liver; sends it to the small intestine

Pancreas

produces pancreatic juice: contains digestive enzymes, and sends it to the small intestine; produces insulin and secretes it into the blood after eating

Digestive tract organs

Mouth

teeth chew food; tongue tastes and pushes food for chewing and swallowing

Pharynx

passageway where food is swallowed

Esophagus

passageway where peristalsis pushes food to stomach

Stomach

secretes acid and digestive enzyme for protein; churns, mixing food with secretions, and sends chyme to small intestine

Small intestine

mixes chyme with digestive enzymes for final breakdown; absorbs nutrient molecules into body; secretes digestive hormones into blood

Large intestine

absorbs water and salt to form feces

Rectum

stores and regulates elimination of feces

Anus

HUMAN DIGESTIVE TRACT

- Mouth
 - Three major pairs of salivary glands
 - Saliva contains salivary amylase
 - Salivary amylase initiates starch digestion
 - Tongue is composed of striated muscle
 - Mixes chewed food with saliva
 - Forms mixture into bolus

PHARYNX AND ESOPHAGUS

- Pharynx
 - Where digestive and respiratory passages come together
 - Soft palate closes off nasopharynx
 - Epiglottis
 - Covers opening into trachea
 - Keeps food from air passages (most of the time)
- Esophagus
 - Takes food to stomach by peristalsis
 - Peristalsis Rhythmical contraction to move contents in tubular organs

SWALLOWIN G

PERISTALSIS IN THE DIGESTIVE TRACT

STOMACH

- Stomach
 - Stomach wall has deep folds
 - Folds disappear as the stomach fills to an approximate volume of one liter
 - Epithelial lining of the stomach has millions of gastric pits, which drain gastric glands
 - Pepsin is a hydrolytic enzyme that acts on protein to produce peptides

ANATOMY OF THE STOMACH

ANIMATION

STOMACH

- Food mixing with gastric juices becomes chyme
 - Junction between stomach and small intestine controlled by a sphincter
 - When the sphincter relaxes, a small quantity of chyme passes into the small intestine

ANIMATION

SMALL INTESTINE

- First segment is duodenum
- Chyme from stomach enters the duodenum
- Mixes with secretions from the liver and pancreas
 - Liver
 - Produces bile, which is stored in gallbladder
 - Bile contains bile salts which break up fat into fat droplets via emulsification
 - Helps maintain glucose concentration in blood by converting excess into glycogen

SMALL INTESTINE

- Pancreas
 - Exocrine gland
 - Produces pancreatic juice and digestive enzymes into the duodenum
 - Pancreatic amylase digests starch to maltose
 - Trypsin digests protein to peptides
 - Lipase digests fat droplets to glycerol and fatty acids
- Epithelial cells intestine also produce enzymes
 - These complete digestion of peptides and sugars

ANATOMY OF THE SMALL INTESTINE

LIVER, GALLBLADDER, AND PANCREAS

 $\textbf{Copyright} \\ \textcircled{o} \\ \textbf{The McGraw-Hill Companies, Inc. Permission required for reproduction or display.}$

ABSORPTION BY VILLI

- Mucous membrane of small intestine
 - Has ridges and furrows that give it a corrugated surface
 - Villi are ridges on the surface, which contain even smaller ridges, microvilli
 - Greatly increase absorptive area
 - Each villus contains blood capillaries and a lymphatic capillary (lacteal)

ANIMATION

DIGESTION AND ABSORPTION OF NUTRIENTS

a. Carbohydrate digestion

b. Protein digestion

c. Fat digestion

DIGESTIVE ENZYMES

salivary amylase starch + H_2O — maltose

$$\begin{array}{ccc} & pepsin \\ protein + H_2O & \longrightarrow & peptides \end{array}$$

$$\begin{array}{c} \text{pancreatic amylase} \\ \text{starch} + \text{H}_2\text{O} & \longrightarrow \end{array} \text{maltose} \end{array}$$

DIGESTIVE ENZYMES

$$\begin{array}{ccc} & maltase \\ maltose + H_2O & & \longrightarrow & glucose + glucose \end{array}$$

LARGE INTESTINE

- Includes cecum, colon, rectum, and anal canal
 - Larger in diameter, but shorter in length than small intestine
 - Absorbs water, salts, and some vitamins
 - Cecum has small projection appendix
 - Colon subdivided into ascending, transverse, descending, and sigmoid colon
 - Opening to anal canal Anus

ANIMATION

JUNCTION OF THE SMALL INTESTINE AND THE LARGE INTESTINE

ANIMATION

NUTRITION: CARBOHYDRATES

- Carbohydrates are present in food in the form of sugars, starch, and fiber.
- Fruits, vegetables, milk, and honey are natural sources of sugars.
- Monosaccharides:
 - Glucose
 - Fructose
- Disaccharides:
 - Lactose (milk sugar)
 - Sucrose (table sugar)

NUTRITION: CARBOHYDRATES

- After being absorbed from the digestive tract all sugars are converted to glucose
 - Glucose is the preferred direct energy source in cells.
- Plants store glucose as starch,
- Animals store glucose as glycogen

NUTRITION: FIBER

- Includes various undigestible carbohydrates derived from plants
- Food sources rich in fiber include beans, peas, nuts, fruits, and vegetables
- Technically, fiber is not a nutrient for humans
 - Cannot be digested
 - Soluble fiber combines with bile acids and cholesterol in the small intestine and prevents them from being absorbed

FIBER RICH FOOD

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

© Amiard/Photocuisine/Corbis

NUTRITION: PROTEINS

- Adequate protein formation requires 20 different types of amino acids
- Adults require 8 from the diet, children require 9
 - Essential amino acids
 - Some foods, such as meat, milk, and eggs, provide all 20 (complete)
 - Vegetables supply one or more essential amino acids, but are deficient in at least one
 - Vegetarians should combine plant products to provide all the essential amino acids

NUTRITION: LIPIDS

- Fat, oils, and cholesterol
- Saturated fats (solids at room temperature) usually come from animals
 - Exceptions are palm oil and coconut oil
 - Contain mostly saturated fats
- Butter and meats, such as marbled red meats and bacon, contain saturated fats

FOOD HIGH IN TRANS-FAT

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

© Benjamin F. Fink, Jr./Brand X/Corbis

DIET AND OBESITY

- Too many calories from any source contributes to body fat.
 - Increases risk of obesity and associated illnesses
- Type 2 diabetes and cardiovascular disease are often seen in people who are obese.

ANIMATION

EXERCISE FOR GOOD HEALTH

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Ryan McVay/Getty Images

NUTRITION: VITAMINS

Vitamins

- Organic compounds the body is unable to produce, but are required for metabolic purposes
- Must be obtained externally
- Antioxidants
 - Cellular metabolism generates free radicals that carry extra electron
 - Vitamins C, E, and A are believed to defend the body against free radicals

NUTRITION: VITAMINS

Vitamin D

- Skin cells contain precursor cholesterol molecule
- Converted to vitamin D after UV exposure
- Activated into calcitriol that regulates calcium uptake and metabolism

ANIMATION

REVIEW

- Digestive Tracts
 - Incomplete versus Complete Tracts
 - Continuous versus Discontinuous Feeders
 - Dentition among Mammals
- Human Digestive Tract
 - Mouth
 - Stomach
 - Small Intestine
 - Large Intestine
 - Accessory Organs
- Digestive Enzymes
- Nutrition

Chapter 34: pp. 633 - 648

Digestive Systems & Nutrition

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

© Arthur Morris/Visuals Unlimited