Chapter 34: pp. 633 - 648

Digestive Systems & Nutrition

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

© Arthur Morris/Visuals Unlimited
OUTLINE

• Digestive Tracts
 • Incomplete versus Complete Tracts
 • Continuous versus Discontinuous Feeders
 • Dentition Among Mammals
• Human Digestive Tract
 • Mouth
 • Stomach
 • Small Intestine
 • Large Intestine
 • Accessory Organs
• Digestive Enzymes
• Nutrition
DIGESTIVE TRACTS

Incomplete versus Complete Tracts

- Incomplete tract has a single opening
 - Ex: Planarian
 - Food enters through mouth and muscular pharynx
 - Wastes exit through mouth and muscular pharynx
 - Lacks specialized parts

- Complete Tract has two openings
 - Ex: Earthworm
 - Food enters through mouth
 - Wastes exit through anus
INCOMPLETE DIGESTIVE TRACT OF A PLANARIAN

gastrovascular cavity

mouth

pharynx
digestive tract

Golgi apparatus

lysosome

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
CONTINUOUS VERSUS DISCONTINUOUS FEEDERS

- **Continuous filter feeders**
 - Ex: Clams
 - Always have water moving into the mantle cavity via incumbent siphon
 - Particles deposited on gills
 - Do not need food storage area

- **Discontinuous feeders**
 - Ex: Squid
 - Uses tentacles to seize prey
 - Allows the beaklike jaws to pull pieces into the mouth with the radula
 - Food storage area needed
NUTRITIONAL MODE OF A CLAM COMPARED TO A SQUID
ADAPTATIONS TO DIET

- Dentition differs with mode of nutrition
 - Omnivores
 - Variety of specializations
 - Accommodate both vegetation and meat
 - Herbivores
 - Incisors for clipping
 - Premolars and molars for grinding
 - Carnivores
 - Pointed incisors and enlarged canines
 - Shear off pieces small enough to swallow
DENTITION AMONG MAMMALS

a. Horses are herbivores.

b. Lions and dolphins are carnivores.

c. Humans are omnivores.
HUMAN DIGESTIVE TRACT

- Humans digestive tract is complete
- Part of a tube-within-a-tube body plan
- Begins with a mouth and ends in an anus
- Digestion entirely extracellular
 - Digestive enzymes are secreted by
 - The wall of the digestive tract, or
 - By nearby glands
Accessory organs
Salivary glands
secrete saliva: contains digestive enzyme for carbohydrates

Digestive tract organs
Mouth
teeth chew food; tongue tastes and pushes food for chewing and swallowing
Pharynx
passageway where food is swallowed
Esophagus
passageway where peristalsis pushes food to stomach

Liver
major metabolic organ: processes and stores nutrients; produces bile for emulsification of fats

Gallbladder
stores bile from liver; sends it to the small intestine

Pancreas
produces pancreatic juice: contains digestive enzymes, and sends it to the small intestine; produces insulin and secretes it into the blood after eating

Stomach
secretes acid and digestive enzyme for protein; churns, mixing food with secretions, and sends chyme to small intestine

Small intestine
mixes chyme with digestive enzymes for final breakdown; absorbs nutrient molecules into body; secretes digestive hormones into blood

Large intestine
absorbs water and salt to form feces
Rectum
stores and regulates elimination of feces
Anus
HUMAN DIGESTIVE TRACT

• Mouth
 • Three major pairs of salivary glands
 • Saliva contains salivary amylase
 • Salivary amylase initiates starch digestion
 • Tongue is composed of striated muscle
 • Mixes chewed food with saliva
 • Forms mixture into bolus
Pharynx and Esophagus

- **Pharynx**
 - Where digestive and respiratory passages come together
 - Soft palate closes off nasopharynx
 - Epiglottis
 - Covers opening into trachea
 - Keeps food from air passages (most of the time)

- **Esophagus**
 - Takes food to stomach by peristalsis
 - Peristalsis - Rhythmical contraction to move contents in tubular organs
PERISTALSIS IN THE DIGESTIVE TRACT
• Stomach
 • Stomach wall has deep folds
 • Folds disappear as the stomach fills to an approximate volume of one liter
 • Epithelial lining of the stomach has millions of gastric pits, which drain gastric glands
 • Pepsin is a hydrolytic enzyme that acts on protein to produce peptides
ANATOMY OF THE STOMACH

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
ANIMATION

Hydrochloric Acid Production by Parietal Cells in the Gastric Glands of the Stomach

Hydrochloric acid is produced in parietal cells through a complex series of reactions.
STOMACH

- Food mixing with gastric juices becomes chyme
 - Junction between stomach and small intestine controlled by a sphincter
 - When the sphincter relaxes, a small quantity of chyme passes into the small intestine
The taste, smell, touch sensation, or thought of food sends nervous impulses to the brain. These impulses cause neurons to stimulate secretion of hydrochloric acid and pepsin in the stomach.
SMALL INTESTINE

• First segment is duodenum
• Chyme from stomach enters the duodenum
• Mixes with secretions from the liver and pancreas
 • Liver
 • Produces bile, which is stored in gallbladder
 • Bile contains bile salts which break up fat into fat droplets via emulsification
 • Helps maintain glucose concentration in blood by converting excess into glycogen
SMALL INTESTINE

- Pancreas
 - Exocrine gland
 - Produces pancreatic juice and digestive enzymes into the duodenum
 - Pancreatic amylase digests starch to maltose
 - Trypsin digests protein to peptides
 - Lipase digests fat droplets to glycerol and fatty acids
- Epithelial cells intestine also produce enzymes
 - These complete digestion of peptides and sugars
ANATOMY OF THE SMALL INTESTINE

- **Small intestine**
 - Lumen
 - Lacteal
 - Arteriole
 - Villus
 - Venule
 - Lymphatic vessel
 - Goblet cell
 - Blood capillaries
 - Lymph nodule
 - Villus microvilli
 - ×100

(Villi): © Manfred Kage/Peter Arnold, Inc.; (Microvilli): Photo by Susumu Ito, from Charles Flickinger, Medical Cellular Biology, W.B. Saunders, 1979
LIVER, GALLBLADDER, AND PANCREAS
ABSORPTION BY VILLI

- Mucous membrane of small intestine
 - Has ridges and furrows that give it a corrugated surface
 - Villi are ridges on the surface, which contain even smaller ridges, microvilli
 - Greatly increase absorptive area
 - Each villus contains blood capillaries and a lymphatic capillary (lacteal)
The primary functions of the digestive system are the breakdown of food (called digestion) and absorption of nutrients.
DIGESTION AND ABSORPTION OF NUTRIENTS

a. Carbohydrate digestion

- Carbohydrate
- Pancreatic amylase
- Maltase
- Glucose
- pH = basic
- Epithelial cell of intestinal villus
- Blood capillary

b. Protein digestion

- Protein
- Trypsin
- Peptides
- Peptidase
- Amino acids
- pH = basic
- Epithelial cell of intestinal villus
- Blood capillary

- Bile salts
- Fat globules
- Emulsification
- Monoglycerides and free fatty acids
- Lipase
- Chylomicron

- Lymphatic capillary

C. Fat digestion

- pH = basic

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
DIGESTIVE ENZYMES

salivary amylase

starch + H₂O → maltose

pepsin

protein + H₂O → peptides

pancreatic amylase

starch + H₂O → maltose
DIGESTIVE ENZYMES

trypsin

protein + H₂O → peptides

maltase
maltose + H₂O → glucose + glucose

peptidases
peptides + H₂O → amino acids
LARGE INTESTINE

- Includes cecum, colon, rectum, and anal canal
 - Larger in diameter, but shorter in length than small intestine
 - Absorbs water, salts, and some vitamins
 - Cecum has small projection - appendix
 - Colon subdivided into ascending, transverse, descending, and sigmoid colon
 - Opening to anal canal - Anus
The presence of food in the stomach and chyme in the duodenum stimulates mass movements in the colon.
JUNCTION OF THE SMALL INTESTINE AND THE LARGE INTESTINE

large intestine
small intestine
cecum
vermiform appendix
Please note that due to differing operating systems, some animations will not appear until the presentation is viewed in Presentation Mode (Slide Show) or in PDFs. Animations will require the latest version of the Flash Player, which is available at http://get.adobe.com/flashplayer.

The United States Department of Agriculture created the North American food guide pyramid. It was designed to represent a total diet, providing sufficient protein, vitamins, and minerals for good health. This set of recommendations is now used widely for diet planning. The pyramid is based on foods of similar origin and composition being grouped together.
NUTRITION: CARBOHYDRATES

- Carbohydrates are present in food in the form of sugars, starch, and fiber.
- Fruits, vegetables, milk, and honey are natural sources of sugars.
- Monosaccharides:
 - Glucose
 - Fructose
- Disaccharides:
 - Lactose (milk sugar)
 - Sucrose (table sugar)
NUTRITION: CARBOHYDRATES

- After being absorbed from the digestive tract all sugars are converted to glucose
 - Glucose is the preferred direct energy source in cells.
- Plants store glucose as starch,
- Animals store glucose as glycogen
NUTRITION: FIBER

- Includes various undigestible carbohydrates derived from plants
- Food sources rich in fiber include beans, peas, nuts, fruits, and vegetables
- Technically, fiber is not a nutrient for humans
 - Cannot be digested
 - Soluble fiber combines with bile acids and cholesterol in the small intestine and prevents them from being absorbed
FIBER RICH FOOD
NUTRITION: PROTEINS

- Adequate protein formation requires 20 different types of amino acids
- Adults require 8 from the diet, children require 9
 - Essential amino acids
 - Some foods, such as meat, milk, and eggs, provide all 20 (complete)
 - Vegetables supply one or more essential amino acids, but are deficient in at least one
 - Vegetarians should combine plant products to provide all the essential amino acids
NUTRITION: LIPIDS

• Fat, oils, and cholesterol
• Saturated fats (solids at room temperature) usually come from animals
 • Exceptions are palm oil and coconut oil
 • Contain mostly saturated fats
• Butter and meats, such as marbled red meats and bacon, contain saturated fats
FOOD HIGH IN TRANS-FAT
DIET AND OBESITY

• Too many calories from any source contributes to body fat.
 • Increases risk of obesity and associated illnesses
• Type 2 diabetes and cardiovascular disease are often seen in people who are obese.
Please note that due to differing operating systems, some animations will not appear until the presentation is viewed in Presentation Mode (Slide Show). To view the animations, they will require the latest version of the Flash Player, which is available at http://get.adobe.com/flashplayer.
NUTRITION: VITAMINS

• Vitamins
 • Organic compounds the body is unable to produce, but are required for metabolic purposes
 • Must be obtained externally
• Antioxidants
 • Cellular metabolism generates free radicals that carry extra electron
 • Vitamins C, E, and A are believed to defend the body against free radicals
NUTRITION: VITAMINS

• Vitamin D
 • Skin cells contain precursor cholesterol molecule
 • Converted to vitamin D after UV exposure
 • Activated into calcitriol that regulates calcium uptake and metabolism
Please note that due to differing operating systems, some animations will not appear until the presentation is viewed in Presentation Mode (Slide Show view). You may view the animations if your system supports it. Otherwise, please visit http://get.adobe.com/flashplayer to get the latest version of the Flash Player, which is required to view the animations.
REVIEW

• Digestive Tracts
 • Incomplete versus Complete Tracts
 • Continuous versus Discontinuous Feeders
 • Dentition among Mammals
• Human Digestive Tract
 • Mouth
 • Stomach
 • Small Intestine
 • Large Intestine
 • Accessory Organs
• Digestive Enzymes
• Nutrition